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Abstract
The use of Intel® Software Guard Extensions (SGX) offers
robust security measures for shielding applications in un-
trusted environments. However, the performance overhead
experienced by IO-intensive applications within SGX limits
widespread adoption. Prior approaches have proposed the
use of userspace kernel-bypass libraries such as Data Plane
Development Kit (DPDK) inside SGX enclaves to enable
direct access to IO devices. However, these solutions often
come at the cost of increasing the Trusted Computing Base
(TCB) size, expanding the attack surface, and complicating
deployment. In this paper, we introduce RAKIS, a comprehen-
sive system that securely enables SGX enclave programs to
leverage fast IO Linux kernel primitives without modifying
user applications. RAKIS prioritizes the security of its TCB
components by employing rigorous software testing and veri-
fication methods, embodying a security-by-design approach.
Importantly, RAKIS achieves performance advantages with-
out sacrificing TCB size or introducing deployment intrica-
cies and demonstrates significant improvements in benchmark
tests with a 4.6x increase in UDP network throughput com-
pared to state-of-the-art SGX enclave LibOS (Gramine-SGX).
To demonstrate the practical applicability of RAKIS, we eval-
uate its performance on four real-world programs showcasing
an average performance improvement of 2.8x compared to
Gramine-SGX across all workloads.

CCS Concepts: • Software and its engineering → Operat-
ing systems; • Security and privacy → Trusted comput-
ing.

Keywords: Secure enclaves, express data path, iouring, trusted
execution environments, system security, Intel SGX
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1 Introduction
The evolution of modern computing has introduced new
paradigms and challenges. A salient development is the in-
creased adoption of Trusted Execution Environments (TEEs),
led by Intel Software Guard Extensions (SGX). SGX enables
user-level code to allocate protected memory regions, or en-
claves, safeguarding them from even privileged adversaries,
including the Operating System (OS) and hypervisor. While
groundbreaking, SGX grapples with issues particularly re-
garding untrusted and slow IO operations. The dependence
on an untrusted kernel for crucial IO functionalities, such
as networking and filesystem operations, leads to a surge in
costly SGX enclave exits. These exits, induced by syscalls
and context switches, significantly impair the performance of
IO-intensive SGX applications, causing up to a 5x decrease
in performance [42]. Given the substantial cost of syscalls
for SGX enclave programs, the elimination of syscalls for
enclave programs should be prioritized.

Boosting application performance by bypassing kernel me-
diation (e.g., syscalls) has been a compelling academic focus
for over a decade. Dune [4] serves as an exemplary initiative
in this realm, functioning as a type-2 hypervisor to shift ap-
plications into a privileged mode. This facilitates the direct
execution of sensitive operations, eliminating the need for ex-
pensive syscalls. Arrakis [32] further advances this space by
reducing the OS’s role to serving only control-plane function-
alities and harnessing the power of the Input-Output Memory
Management Unit (IOMMU) to grant user-space applications
direct and secure access to IO devices. This strategy signif-
icantly enhances latency and throughput for data-intensive,
IO-demanding applications. More recently, the Linux kernel
has embraced this trend by introducing new IO interfaces that
offer reduced reliance on syscalls, such as eXpress Data Path
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(XDP) [19] and io_uring [16]. These Fast IO Kernel Prim-
itives (FIOKPs) have emerged as specialized interfaces that
enhance performance by eliminating the overhead associated
with syscalls and context switches.

The challenge, therefore, lies in the seamless integration
of FIOKPs within SGX enclaves, thereby enhancing per-
formance without compromising the robust security guar-
antees intrinsic to SGX. More specifically, securely en-
abling FIOKPs in SGX brings a unique set of challenges:
1) Untrusted kernel features: FIOKPs are often accompa-
nied with userspace libraries (e.g., libxdp [43] for XDP and
liburing [25] for io_uring) that assume a trusted OS while
this assumption does not extend to enclave programs; 2) In-
compatible IO interfaces: The absence of a one-to-one map-
ping between regular IO syscalls such as send()/recv() and
FIOKP interfaces necessitates modifications to enclave pro-
grams, thereby undermining existing efforts [1, 3, 6, 34, 36]
to support executing unmodified programs inside SGX; 3) Us-
ability vs. enlarged TCB: FIOKPs alone provide only lower-
level services (e.g., layer-2 network packets in XDP) and
require additional functionalities to support a full stack of
services (e.g., ARP, IP/UDP), which expands the TCB and
creates a larger attack surface.
RAKIS. In this paper, we present RAKIS, a comprehensive
end-to-end system for securely enabling FIOKPs within SGX
enclaves, seamlessly integrating them with unmodified user
applications. RAKIS takes a security-first approach by per-
forming rigorous security checks on the shared untrusted data
of FIOKPs. To mitigate potential threats posed by a malicious
OS tampering with data passed into the enclave, RAKIS em-
ploys rigorous software testing and verification methods in
all code related to FIOKPs within the SGX environment to
ensure their correctness even when operating on untrusted
data. Furthermore, RAKIS enables high-level functionalities
(e.g., layer-3 networking) on top of FIOKPs inside enclaves.
In order to support unmodified user applications, RAKIS pre-
serves regular syscall interfaces and seamlessly integrates
into existing enclave syscall abstraction layers. Additionally,
RAKIS maintains a small footprint, thereby ensuring a mini-
mum increase in TCB size.

To demonstrate the real-world capability and applicabil-
ity of RAKIS for enclave applications, we have enabled it
on two prominent FIOKPs: XDP for providing performant
UDP networking and io_uring for providing exit-less TCP
networking and file IO syscalls. The process of implementing
these two FIOKPs in RAKIS is described in detail, includ-
ing a security analysis of RAKIS-enabled XDP and io_uring.
Further highlighting the benefits of integrating RAKIS with
enclave programs, we have conducted extensive benchmark
performance evaluations revealing an average UDP network-
ing performance gain of 4.6x compared to a state-of-the-art
SGX library OS. We have also evaluated the completeness of
RAKIS’s support for different syscalls across a selection of 4
real-world workloads: Memcached [29], Redis [35], Curl [8]

and MCrypt [28] and showed that RAKIS can support execu-
tion of practical workloads with 2.8x average performance
improvement compared to a state-of-the-art SGX library OS.
Contributions. This paper makes the following contribu-
tions:

• FIOKPs for SGX. RAKIS represents the first compre-
hensive end-to-end system designed to securely enable
Linux kernel fast IO primitives for unmodified SGX
applications, offering a unique blend of performance
optimization, ease-of-deployment and minimal TCB.

• Security-by-design. RAKIS employs comprehensive
testing mechanisms, encompassing both model check-
ing and dynamic fuzzing techniques, to ensure robust-
ness across RAKIS’s trusted components.

• Implementation. RAKIS has been integrated with two
FIOKPs: XDP and io_uring, demonstrating its appli-
cability and potential to enhance the performance of
real-world, IO-intensive applications within SGX en-
claves.

2 Background
2.1 Intel SGX
SGX [15] is an instruction set that enables the creation of a
secure enclave, providing a protected execution environment
for user-level software. The enclave memory is encrypted to
ensure confidentiality and integrity of the data stored within
it. After the enclave is initialized, a user program can enter
the enclave using the EENTER instruction, allowing a context
switch from untrusted code to trusted code. Access to hard-
ware and other OS resources is restricted within the enclave.
When the enclave program needs to make syscalls, it must
copy the syscall data to untrusted memory, exit the enclave
using the EEXIT instruction, perform the syscall, re-enter the
enclave, and copy the result back from untrusted memory.
These operations impose a significant overhead, with the en-
clave exit alone requiring a minimum of 8200 CPU cycles, as
reported by Weisse et al. [42].

2.2 Running Unmodified Applications in SGX
Running unmodified user applications inside SGX enclaves
has been a topic of extensive academic research since the
introduction of SGX. One of the primary challenges in this
context is to provide secure access to host OS syscalls from
within the enclave. To address this challenge, various works
proposed the use of a Library Operating System (LibOS) in-
side enclaves [1, 3, 6, 34, 36]. Figure 1 provides the generic ar-
chitecture of LibOSs proposed by previous works. In essence,
the LibOS would serve as an intermediary layer that abstract
and handle syscalls within the enclave environment. Depend-
ing on the specific scenario, the LibOS employs different
strategies to handle syscalls. In some cases, it can completely
emulate the syscall within the enclave itself. However, for
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Figure 1. An example of a SGX LibOS architecture. The LibOS
acts as an intermediary to provide unmodified user programs with
access to host OS services from within the enclave.

majority of syscalls, particularly those related to IO opera-
tions, the LibOS would exit the enclave, perform the required
syscall on behalf of the user program in the untrusted host en-
vironment, and then re-enter the enclave to verify the results
and provide them back to the user program running inside the
enclave. While this mechanism permits unmodified enclave
user programs to leverage host OS syscalls, it imposes costs
associated with enclave exit operations. To demonstrate its
frequency, Figure 2 illustrates the count of enclave exits re-
quired to execute the network benchmark test presented in our
evaluation, using Gramine LibOS [6] within SGX enclaves.

2.3 eXpress Data Path
XDP is a Linux kernel primitive for high performance net-
work packets processing. Essentially, XDP is an eBPF frame-
work that enables running eBPF scripts on incoming network
packets. The user-provided XDP programs attach to network
interfaces, with the ability to inspect and perform arbitrary
alterations to the received network packets. The return code
of the XDP program determines how the received packet is
handled, allowing for decisions such as dropping the packet,
passing it up the normal Linux kernel network stack, or redi-
recting it to userspace bypassing the Linux kernel network
stack. XDP is the cornerstone feature that enabled introduc-
ing a new socket type called XDP Socket (XSK). XSKs are
specifically designed for a one-to-one binding with a single
Network Interface Card (NIC) queue. The loaded XDP eBPF
program orchestrates the redirection of incoming packets
from NIC queues to their respective bound XSKs, bypassing
the kernel stack. Therefore, XSKs deliver layer-2 network
data frames before any kernel processing with up to 5x the
throughput of raw networks packets AF_PACKET [18].
XSK’s data structures. XSKs necessitate the allocation of
a packets buffer area known as UMem. The UMem area
is divided into frames, where each frame can hold a single
network packet. Furthermore, XSKs necessitate a minimum
of four producer/consumer rings that enable the transfer of
ownership of UMem frames between the user and the kernel
in a lockless manner. These rings consist of the Fill Ring
(xFill) and Receive Ring (xRX) rings for the receive routine,
as well as the Complete Ring (xCompl) and Transmit Ring
(xTX) rings for the send routine. The entries of all four rings

1K 10K 200K
Enclave exits

iperf3      
Gramine-SGX

iperf3   
Rakis-SGX

HelloWorld  
Gramine-SGX

Figure 2. Comparison of enclave exits required when running the
iperf3[17] tool on Gramine LibOS [6] and RAKIS within SGX en-
claves. The x-axis represents the log-scaled count of enclave exits at
the conclusion of the network test, with the baseline depicted by the
HelloWorld program. RAKIS utilizes FIOKPs to eliminate the need
for enclave exits for IO operations.

are UMem offsets pointing to the UMem frame being sent or
received.
XSK’s setup. The end result of an XSK setup is for packets
arriving at a specific NIC queue to be placed in a user allo-
cated UMem buffer. The UMem area is allocated by the user
and is passed to the kernel using the setsockopt syscall. To
create the four rings, the user issues the setsockopt syscall
for each ring, specifying the respective flag option. For net-
work packets to start flowing into the UMem area, the user
must attach an XDP eBPF program to a NIC queue to redirect
network packets toward the newly created XSK. The loaded
XDP program has flexibility in determining which packets are
directed to the XSK based on various factors such as header
values of the network packet.
XSK’s operation. The operation of XSK sockets revolves
around the utilization of four XSK rings for the purpose of
sending and receiving network packets within UMem frames.
The user is responsible for allocating UMem frames between
the send and receive routines, with all UMem frames initially
owned by the user. For receiving, two rings are used: xFill
and xRX. In xFill, the user acts as the producer, and the kernel
is the consumer. Conversely, in the xRX ring, the roles are
reversed, with the kernel acting as the producer and the user as
the consumer. To receive network packets, the user allocates
UMem frames from the UMem area and produces them in the
xFill. As network packets arrive, the kernel consumes UMem
frames from xFill, places incoming packets into the consumed
UMem frames, and then produces the UMem frames in xRX
for the user’s consumption. For the send routine, xTX and
xCompl are used. The user is the producer in the xTX and
the consumer in the xCompl, with the kernel assuming the
opposite role in both rings. To send network packets, the
user allocates a UMem frame, copies the layer-2 data frames
into it, and then produces these UMem frames in xTX. The
kernel consumes the UMem frames from xTX and performs
the transmission of the network packets. Upon completion
of the transmission, the kernel produces the UMem frames
in the xCompl. This allows the user, acting as the consumer
in xCompl, to claim the ownership of UMem frames to use



EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Alharthi et al.

Ring Purpose

xFill † Supply kernel with UMem frames for incoming packets
xRX ‡ Receive populated UMem frames from kernel
xTX † Request kernel to transmit UMem frames

xCompl ‡ Pass UMem frames to user after transmit is complete

iSub † Submit asynchronous IO requests to the kernel
iCompl ‡ Provide status information for I/O operations

Table 1. A Summary of the rings data structures of two kernel IO
primitives: XSK (top four rings) and io_uring (bottom two rings).
Rings marked with † are rings where the user is producer, while
rings marked with ‡ are rings where the user is consumer. For all
rings, the kernel assumes the opposite role.

them for the next send/receive. A summary of the four XSK
rings along with each ring’s purpose is provided in Table 1.

2.4 io_uring

io_uring [16] is a versatile Linux kernel primitive that offers
an asynchronous interface for performing various types of IO
operations. It can be utilized for a wide range of syscalls such
as read, send and poll for asynchronous IO operations.
io_uring’s data structures. Two shared producer/consumer
rings are at the core of io_uring’s functionality, which estab-
lish the communication channels between the user and the
kernel. These rings consist of the Submission Ring (iSub)
and the Complete Ring (iCompl), as shown in Table 1. Each
iSub entry is an instance of a structure specifying the syscall
and its arguments, while an iCompl entry is an instance of a
structure mainly containing the return code.
io_uring’s operation. The operation of io_uring is cen-
tered around the use of the iSub and iCompl to request IO
operations from the kernel. To initiate an IO operation, the
user populates the necessary details within an iSub entry. If
the IO operation requires a user buffer, such as in the case of
read or write, the user must provide a pointer to a buffer as
part of the iSub entry. Once the submission queue entry is pre-
pared, the user produces a reference to that entry in iSub for
processing by the kernel. The kernel, assuming the consumer
role in iSub, processes the user request. Upon completion of
the requested IO operation, the kernel generates an entry in
iCompl containing the operation return code.

3 Overview
Threat Model. The main objective of RAKIS is to provide
fast IO primitives within SGX enclaves, ensuring adherence
to SGX security design and threat model, with minimal TCB
expansion. RAKIS does not trust any data outside enclave
memory, this includes any data used to control the operation
of FIOKPs. RAKIS achieves equivalent security guarantees
as previous works without relying on enclave exits to han-
dle syscalls. RAKIS considers robustness and resilience as
part of its threat model, aiming to prevent crashes caused by
consumption of invalid data from untrusted memory.

Goals. Design goals of RAKIS are threefolds:
1) Trustworthiness. RAKIS must rigorously handle untrusted
values to thwart malicious control flow manipulations within
the enclave. Furthermore, RAKIS assumes full responsibility
for managing untrusted memory, ensuring that user programs
primarily operate on trusted enclave memory. Furthermore,
RAKIS must be subjected to thorough program testing and
auditing, especially for code components interacting directly
with untrusted host OS through shared untrusted memory.
2) Minimal TCB. Vanilla FIOKPs only offer low-level ser-
vices (e.g., delivering layer-2 network packets) that cannot
meet the requirement of modern programs (e.g., layer-4 net-
working). However, comprehensively supporting lacked ker-
nel functionalities for FIOKPs inside enclaves forms a wide
and complex attack surface. Therefore, RAKIS must achieve
its goals with minimal TCB increase.
3) Usability. It is crucial to make FIOKP interfaces
compatible with existing I/O syscall interfaces to ensure
compatibility with unmodified user applications. By prior-
itizing usability, RAKIS strives to provide a seamless and
transparent integration while harnessing the advantages of
FIOKPs within SGX enclaves.
Architecture. The architecture of RAKIS is illustrated in Fig-
ure 3. RAKIS comprises four distinct modules, each assigned
specific responsibilities and tasks within the system. The first
module is the FastPath Module (FM) (§4.1). It serves as the
interface between the enclave and the untrusted host OS. Its
purpose is to deliver data via FIOKPs into the enclave. Impor-
tantly, it achieves this by utilizing only the shared untrusted
memory without requiring any enclave exits. The second mod-
ule is the Service Module (SM) (§4.2), which builds on top
of the FM. Given the vast functionality gap between what is
delivered by FIOKPs and what is expected by unmodified
user applications utilizing regular IO syscalls, the SM steps
in to bridge this disparity. It provides RAKIS with the essen-
tial functionalities to seamlessly hook into the regular syscall
API. The third module is the Monitor Module (MM) (§4.3),
situated outside the enclave. Its primary role is to oversee
the FIOKP data structures within shared memory and issue
the needed syscalls to operate the FIOKPs on behalf of the
FM. Lastly, the Testing Module (TM) plays a crucial role
in ensuring the robustness and security of the system. The
design and implementation of the TM is elaborated upon in
(§5), as it stems from our security analysis.
IO integration As shown in Figure 3, RAKIS integrates
two FIOKPs: XDP and io_uring. RAKIS leverages the XDP
FIOKP to facilitate exitless UDP IO inside SGX enclaves.
For incoming packets, RAKIS configures the host OS’s XDP
primitive to direct UDP packets into shared untrusted memory.
Subsequently, RAKIS’s FM securely retrieves these packets
from the shared memory, transporting them into the enclave’s
trusted memory. Once inside the enclave, these packets un-
dergo processing through a UDP/IP stack, priming them for
user consumption. For outgoing packets, RAKIS interfaces
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Figure 3. RAKIS architecture: FastPath Module (FM) (§4.1) and Service Module (SM) (§4.2) are inside the SGX enclave. The Monitor Module
(MM) (§4.3) exclusively runs outside the enclave. The Testing Module (TM) (§5) serves as a static component that offers testing tools.

with the trusted component of a LibOS to handle UDP send
syscalls via its UDP/IP stack and the XDP primitive. Simi-
larly, for TCP and file IO functionalities, RAKIS leverages
the power of io_uring. To streamline this process, RAKIS
integrates with the trusted component of a LibOS, enabling it
to handle IO syscalls without necessitating enclave exits.

4 Design and Implementation
4.1 FastPath Module (FM)
The FM is the central component of RAKIS, serving as the
main module responsible for incorporating and supporting
FIOKP capabilities. It runs inside the SGX enclave and in-
teracts directly with the host OS using untrusted memory for
FIOKP operations. FMs take the role of the user in FIOKP
operations, facing an untrusted host OS. The FM abstracts
all untrusted interactions with the host OS, including control
values and data structures necessary for FIOKPs, and there-
fore alleviates higher-level components from the burden of
processing on untrusted non-enclave memory.
Validating the initialization data. The FM’s initialization
values are derived from user configuration variables and val-
ues returned by the initialization syscalls of the FIOKP. These
values are expected to remain constant throughout the life-
time of the FM. Additionally, RAKIS ensures the consistency
of syscall returned values by deriving them independently
from the host OS whenever possible. For instance, instead
of relying on the host OS-provided ring mask value, RAKIS
calculates it based on the user-provided ring size. The top
rows of Table 2 present the collection of initialization values
employed by RAKIS, along with the corresponding checks
that are performed on them to validate their correctness.
Validating the runtime data. While SGX offers protections
for enclave memory, manipulating the enclave program can
compromise these protections, especially if enclave data is

maliciously copied outside or overwritten with untrusted con-
tent. Thus, a key objective of the FM is to certify the interac-
tions carried out by FIOKPs across the trust boundaries with
the host OS. To carry out those interactions, they rely on three
data categories that reside in shared untrusted memory: 1)
User data values, such as network packets and IO operations
status codes, 2) memory offsets that point within agreed-upon
buffers, and 3) ring control values, such as the producer and
consumer values of the shared rings. The FM verifies all three
data categories to facilitate secure FIOKP interactions. The
bottom rows of Table 2 provide a list of the data items falling
within each of the data category.
Validating the shared rings. At initialization, FIOKPs
shared ring structures are setup by the host OS in the re-
quest of the FM. In particular, these rings involve the host
OS either producing the data (i.e., the producer) consumed
by the FM (i.e., the consumer), or vice versa. The producer
and the consumer of a ring structure share three ring control
variables: the ring size, the producer value and the consumer
value. For the FM, the ring size is an immutable user config-
uration that is copied to trusted memory at RAKIS’s startup.
However, in runtime, the consumer and producer variables
must reside in the shared untrusted memory for direct ac-
cess by both actors. Yet, inherent to the design of ring data
structures, and based on the role of FM within the ring, the
producer and consumer values serve distinct purposes: one
acts strictly as write-only, while the other is exclusively read-
only. For instance, in a ring where FM acts as the producer,
the producer value in shared untrusted memory is exclusively
write-accessible, whereas the consumer value must be read
and verified before utilization. Conversely, if FM operates as
the consumer within the ring, the consumer value in shared
untrusted memory becomes exclusively write-only, while the
producer value requires reading and subsequent verification
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Stage Category Data Items Checks Fail Action

Initialization
File descriptors XSK fd, io_uring fd fd >= 0 Abort startup

Memory pointers
XSK rings & UMem 1) Non-overlapping.

Abort startup
io_uring rings 2) Exclusively in untrusted memory.

Operation

User data values

Incoming network packets & read
No checks / Left for application-level protocols i.e. TLS -

file contents

IO operations status codes Return code is expected for the requested operation Return -EPERM

Memory offsets
UMem frame 1) UMem frame correctly owned by routine. Refuse and
io_uring iCompl 2) Offset & size fully points within UMem/iCompl. advance consumer

Untrusted ring
control values

Producer value in rings where
0 <= (Produceru - Consumert) <= sizet Do not update

RAKIS is consumer trusted producer

Consumer value rings where
0 <= (Producert - Consumeru) <= sizet Do not update

RAKIS is producer trusted consumer

Table 2. Enumeration of untrusted data utilized by RAKIS’s FM to facilitate the operation of XDP and io_uring FIOKPs. Each untrusted
data item has a trusted version stored within the enclave memory. Untrusted data are copied to trusted memory prior to applying any check.
Successful completion of the checks allows the data to update its trusted version and be utilized by RAKIS for its operation. In the event of
failed checks, RAKIS will perform the action specified in the Fail Action column. (u) denotes an untrusted value. (t) denotes a trusted value.

before use. Hence, to protect against manipulation of the pro-
ducer and consumer values, RAKIS adopt a secure-by-design
approach by maintaining trusted versions of all ring control
variables inside trusted memory. Consequently, before up-
dating the trusted version of a read-only control value, the
retrieved value is subjected to distinct security checks, based
on FM’s role in the ring, as shown in Table 2.
Enabling the XDP primitive. XSK relies on the use of four
RAKIS-certified rings and a data buffer called the UMem.
The UMem and the four rings must reside in the shared un-
trusted memory for host OS access. Moreover, RAKIS can
manage multiple XSKs, each associated with a separate FM
and requiring dedicated rings and UMem.
Initialization of XSK. The initialization process for XSK is
intricate, involving a series of at least 14 syscalls to setup the
four shared rings, allocate the UMem area, and load the XDP
eBPF program. During the startup of RAKIS, initialization
routines for XSKs are executed outside the SGX enclave. Af-
ter each XSK is initialized, each XSK FM acquires five mem-
ory pointers that point to the four shared rings and the UMem.
The FM verifies that the five pointers are non-overlapping and
that they reside exclusively in shared untrusted memory.
UMem frames allocator. During operating of XSK, it is
the FM’s responsibility to manage the ownership of UMem
frames. Initially, all UMem frames are owned by the FM. To
send or receive network packets, the FM and the host OS ex-
change ownership of UMem frames using xTX and xCompl
for the send routine, and xFill and xRX for the receive routine.
A critical observation of XSK operation is that the FM must
anticipate consuming only the UMem frames that it had pre-
viously produced within the corresponding ring in the same
routine. To ensure the integrity of the FM UMem frame pool

and prevent potential malicious manipulation by the untrusted
host OS, the FM must verify the ownership of the consumed
frames before adding them to its UMem frame pool for fu-
ture allocations. This verification step is crucial in preventing
scenarios where the host OS could deceive the FM into pop-
ulating its UMem frame pool with invalid and overlapping
frames. By confirming ownership, the FM safeguards against
unexpected paths in the UMem frame allocator and prevents
multiple entities from erroneously claiming ownership of the
same UMem frame. To that end, RAKIS maintains a map to
track the ownership of each UMem frame, as well as the spe-
cific routine in which it is currently being utilized. In the event
that RAKIS encounters an invalid or unexpected UMem frame
from either xCompl or xRX, it can swiftly detect this through
its ownership tracker. In such cases, RAKIS takes appropriate
action by advancing the ring consumer value and refusing to
process the problematic UMem frame. This meticulous vali-
dation mechanism ensures the robustness of the UMem frame
allocator and enhances RAKIS’s resilience against potential
malicious activities orchestrated by the host OS.
Quality of service assurance. With a properly configured
XSK, incoming packets are placed in UMem frames that
were provided by the FM in the xFill ring. However, if the
FM fails to produce sufficient UMem frames to accommodate
incoming packets, the excess packets will be dropped due to
memory constraints. This puts emphasis on efficient manage-
ment of XSKs, as delays or inefficiencies can directly result
in packet drops. To address this, we assign a distinct SGX
enclave thread to each XSK managed by RAKIS. Each XSK
FM thread is tasked with transferring incoming packets to
trusted memory and subsequently invoking the UDP/IP stack
for processing, readying the received packets for user access.
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Enabling the io_uring primitive. io_uring utilizes two
RAKIS-certified shared rings: iSub and iCompl, to submit and
receive IO requests. Similar to XSK’s, the io_uring initializa-
tion routine is completed upon RAKIS’s startup, yielding two
pointers to iSub and iCompl. RAKIS employs the io_uring
primitive to handle five syscalls: send and receive for TCP
sockets, along with read, write, and poll. When IO requests
arrive at the io_uring FM, it swiftly submits them to the
host OS via the iSub. Once the IO task concludes, the host
OS generates a corresponding entry in the iCompl for FM’s
consumption. To optimize performance and avoid potential
contention issues, the io_uring FM runs in the same thread
as the IO requester. In multi-threaded user programs, RAKIS
creates a separate io_uring FM for each user thread where
each io_uring FM operates independently.
Implementation. We wrote our two FMs in a total of 2K
lines of C code. To implement RAKIS’s certified rings, we
developed a dedicated C file that accepts pointers to untrusted
ring values as input. This code module provides accessors
equipped with checks to maintain valid ring states. Both the
producer and consumer values, represented as 32-bit unsigned
integers (u32), can cyclically wrap around upon reaching the
maximum u32 value. However, when applied as they are, the
checks outlined in Table 2 have limitations in addressing sce-
narios where the producer value wraps around before the con-
sumer value does. Thus, our implementation handles this edge
case by introducing supplementary checks that enforce the
same constraints while accommodating scenarios involving
wrapping around. In addition, we intentionally refrained from
using the official userspace libraries associated with XDP and
io_uring, namely libxdp and liburing. These libraries are
not designed with SGX trust assumptions in mind, potentially
introducing wide attack surfaces if contained inside SGX
enclaves, as discussed in §5. Moreover, these libraries are sig-
nificantly larger in size, with liburing being over 35K lines
of code and libxdp (with its dependance on libbpf) being
over 130K lines of code. The extensive size of these libraries
is attributed to their broad applicability. For instance, libbpf
supports over 25 BPF commands, RAKIS uses only two BPF
commands to enable XDP sockets. Similarly, liburing sup-
ports over 40 io_uring operations, whereas RAKIS uses only
8 for file and TCP IO and polling. Therefore, we chose to
develop custom low-level libraries within RAKIS tailored to
our specific requirements and threat model.

4.2 Service Module (SM)
The SM acts as an intermediary layer, extending the capabili-
ties of low-level FIOKPs to fulfill the functional requirements
of user-level syscall interfaces. The SM exclusively processes
trusted in-enclave buffers, relaying on FMs to handle un-
trusted buffers.
UDP/IP stack To enable RAKIS to employ XSKs for UDP
IO, the UDP/IP stack functions as an essential bridge. It con-
nects the functionalities of XSK FMs, which handle layer-2

data frames, with syscalls like recv and send, which deliver
application-level data. The UDP/IP stack is equipped with
multi-threading capabilities, allowing for simultaneous usage
of the stack with minimal contention. Broadly, two distinct
thread types interact with the UDP/IP stack: XSK FM threads
and user threads. The XSK FM threads utilize the UDP/IP
stack to process incoming packets. After the XSK FM se-
curely copies layer-2 data frames into trusted memory, the
UDP/IP stack takes over for processing. Based on packet va-
lidity, the stack either routes these packets to a UDP socket
queue for user consumption or drops them. On the other hand,
user threads interface directly with the UDP/IP stack to serve
UDP sockets syscalls like recv and send. For the recv syscall,
user threads aim to retrieve data from the relevant UDP socket
queue. For the send syscall, user threads utilize the stack to
encapsulate the user data before transferring it directly to the
XSK UMem for transmission by the host OS.
SyncProxy. The SyncProxy enables RAKIS to use io_uring
FIOKP to serve five syscalls: send and receive for TCP
sockets, along with read, write, and poll. The SyncProxy
receives those IO syscalls synchronously from the API sub-
module, and acts as an intermediary to forward them to
an io_uring FM. Since the user expects the results syn-
chronously, the SyncProxy blocks and wait for the user re-
quest to complete as signaled by the io_uring FM.
API. The API submodule integrates with existing SGX Li-
bOSs to reroute IO syscalls for processing by RAKIS, thereby
bypassing the need to send them to the untrusted part of the
LibOS via enclave exits. The primary role of the API submod-
ule is to interface with the UDP/IP stack and SyncProxy to
handle the IO syscalls directed to RAKIS. In addition, the API
submodule plays a crucial role in coordinating poll syscalls
involving different IO providers. Consider a poll syscall
encompassing two file descriptors: one for a UDP socket
overseen by RAKIS’s UDP/IP stack and another for a TCP
socket handled by the host OS. In this context, exclusively
monitoring events on one socket, neglecting the other, might
introduce delays in processing events from the overlooked
socket. To address this, the API submodule initiates the poll
syscall for both file descriptors, directing them to their re-
spective IO providers. Following this, the API submodule
engages in a busy-wait mechanism, monitoring events on
both sockets via the UDP/IP submodule for the UDP socket
and the SyncProxy submodule for the TCP socket. Upon the
occurrence of an event on either socket, the API submodule
aggregates the outcomes and forwards them to the user.
Implementation. For the UDP/IP stack, we based our imple-
mentation on LWIP [27]. LWIP is a comprehensive TCP/IP
network stack that supports a plethora of network protocols
beyond the scope of RAKIS’s requirements. Consequently,
our initial task involved refining LWIP by eliminating un-
necessary functionalities, retaining only those essential for
processing UDP/IP packets. This refinement significantly
downsized LWIP from its original size of over 80K LoC to
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under 5K LoC. Notably, LWIP’s support for multi-threading
presented challenges; its reliance on a global lock became
increasingly problematic as thread counts rose, resulting in
contention issues. Addressing this, we transitioned the stack
from a singular global lock to a more efficient system using
multiple smaller read/write locks on the stack’s shared state.
Regarding the SyncProxy, we designed it as a per-thread pass-
through stub that forwards requests directly to io_uring FMs.
Lastly, we opted to use Gramine [6] as the LibOS to intercept
and forward IO syscalls to RAKIS.

4.3 Monitor Module (MM)
While FIOKPs aim to minimize dependency on syscalls to
mitigate the costly context-switch overhead, total elimina-
tion of syscalls for XDP and io_uring remains unfeasible.
In FIOKPs rings where the kernel serves as the consumer,
syscalls become essential to prompt the kernel to process
user requests. Although FIOKPs introduce flags such as
XDP_USE_NEED_WAKEUP for XDP and IORING_SETUP_SQPOLL
for io_uring to reduce the frequency of syscalls, they do not
eradicate them entirely [16, 19]. Rather than burdening all
FMs with enclave exit overhead for these infrequent syscalls,
the MM efficiently oversees all RAKIS’s FIOKPs with a dedi-
cated thread consistently operating outside the enclave. How-
ever, this decision mandates synchronization between the MM
and each FIOKP FM to guarantee the MM’s prompt syscall
execution on behalf of the FMs. To address this synchro-
nization challenge, the MM continually monitors the shared
FIOKP rings in untrusted memory. Specifically, it observes
the producer value within the FIOKP rings where RAKIS acts
as the producer. Upon recognizing that an FM has progressed
its producer value, the MM invokes a syscall, prompting the
host OS to address RAKIS’s requests. Thus, by monitoring
theses FIOKP rings, the MM avoids the need for direct in-
teractions with individual FMs to determine the timing and
nature of the syscalls. Furthermore, the design of XDP and
io_uring allows syscalls to instruct the kernel about user re-
quests without blocking and without immediately executing
the requested IO operations. Instead, both XDP and io_uring
employ dedicated kernel routines, scheduled in response to
the syscall, to handle user requests from the shared rings [20–
22]. Benefiting from these non-blocking syscalls, the MM
can efficiently oversee multiple FIOKPs using one thread.
Implementation. The MM thread is spawned during the
final phase of RAKIS’s initialization. Operating outside the
enclave, the MM thread is provided with a set of pointers
that point to the shared untrusted producer values of the rings
where RAKIS acts as the producer. These encompass xFill
and xTX rings within XSK, as well as iSub of io_uring.
Additionally, the MM thread is provided with the file descrip-
tors of the XSKs and io_urings to be used in the syscalls.
During runtime, the MM thread continuously monitors the
producer values of each ring, triggering the recvfrom syscall
when an XSK FM progresses the value of xFill’s producer,

the sendto syscall when an XSK FM progresses the value
of xTX’s producer, and the io_uring_enter syscall when an
io_uring FM progresses the value of iSub’s producer.

5 Security Analysis
In this section, we delve into pivotal security considerations
for RAKIS. To set the context, we highlight potential vul-
nerabilities when settling with user libraries accompanying
FIOKPs, like libxdp[43] and liburing[25], to use within
SGX enclaves. Particularly, these libraries are crafted with
assumptions that trust the host OS. Consequently, their de-
ployment within SGX enclaves could enable a malicious host
OS to alter enclave program behavior or access enclave data.
libxdp case study. libxdp provides the function
xsk_prod_nb_free[44] to check the number of free elements
to produce in a XSK ring. The function essentially determines
the count by utilizing the consumer value read from shared
memory provided by the host OS. However, the function does
not verify that the calculated number of free elements must
be less than or equal to the ring size. Such oversight could un-
intentionally cause anomalies in user programs using libxdp
within an SGX enclave, possibly resulting in buffer overflows.
On the other hand, RAKIS implements rigorous checks on all
ring control values, ensuring a consistently valid ring state
irrespective of the values supplied by the host OS.
liburing case study. Similarly, liburing exhibits analogous
concerns. For instance, the function io_uring_queue_init
within liburing is intended as a utility to initialize the
io_uring context. However, owing to liburing’s lack of fa-
miliarity with the trust assumptions specific to SGX enclaves,
it overlooks a crucial validation step: ensuring that pointers
within the io_uring context exclusively reference shared un-
trusted memory areas rather than enclave memory. This omis-
sion paves the way for a malicious host OS to compromise
SGX confidentiality by extracting enclave-protected data, as
shown in Appendix A. Conversely, RAKIS rigorously verifies
all initialization values before accepting them, recognizing
they were provided by an untrusted host OS.
RAKIS’s TCB. When utilizing RAKIS, it’s crucial to high-
light its minimal impact on the TCB size. Among RAKIS’s
components, the FM and the SM are integrated into the SGX
enclave’s TCB. The FM component, while only consisting
of 2K LoC, expands the attack surface due to its direct in-
teractions with the untrusted host OS via untrusted memory.
Even though FMs contain runtime checks on all data read
from untruted memory, programming errors could still lead
to incomplete runtime checks. Therefore, we model the FMs
interactions with the untrusted host OS in a set of constraints
and assumptions. We then verify that our FM code adheres
to our model, as detailed in §5.1. On the other hand, the SM
consists of 6K LoC. While the SM does not directly interface
with the host OS, its interaction with untrusted data calls for
rigorous testing. Notably, within the SM’s architecture, we
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focus our testing predominantly on the UDP/IP stack due to
its size and pivotal role in data processing. As a result, we stat-
ically test RAKIS’s UDP/IP stack using fuzzing techniques to
guarantee its proper handling of untrusted data (§5.2). The dis-
tinction between our testing efforts for the FM and the SM is
based on the following factors: model checking is more thor-
ough and feasible for the FM, which has a small code size and
lower complexity. The SM, however, is larger and more com-
plex, making model checking infeasible. Therefore, we opted
for fuzzing the SM instead. Lastly, the MM is entirely out-
side RAKIS’s TCB and does not interact with any of RAKIS’s
trusted components. Given that the MM’s functionality only
affects data availability, it is excluded from this security anal-
ysis. Based on our security analysis of RAKIS’s design, we
crafted the TM to rigorously test the trusted components of
RAKIS. The TM comprises two distinct binaries tailored for
our testing endeavors: the verification binary, which executes
our model checking atop the FM, and a fuzzing harness binary
integrated with the SM UDP/IP stack for fuzz testing. The
TM does not affect RAKIS’s performance, as it is only used
for testing and is not included in the production version of
RAKIS.

5.1 Verifying the FM
The primary goal of modeling the FMs interactions with the
host OS is to uphold the integrity of the FM’s state, especially
during the processing of untrusted data for FIOKP operations.
We aim to ascertain that any value obtained from untrusted
memory do not result in an unexpected state within the FM.
Consequently, our model checking efforts aspire to reduce
the host OS to a remote adversary, thereby limiting the attack
surface to only the exchanged IO data.
Scope. We model all interactions between the FMs and the
host OS that pertains to managing the XSK and io_uring
primitives. For the XSK primitive, this encompass manag-
ing the rings to send and receive network frames, as well as
verifying the memory location and limits of consumed XSK
UMem frames. For the io_uring primitive, our model covers
the ring operations needed to perform the various IO opera-
tions as well as verifying the memory location and limits of
all consumed untrusted data.
Specifying FIOKPs rings. FMs within RAKIS rely exclu-
sively on RAKIS-certified rings to manage FIOKP rings lo-
cated in shared untrusted memory. RAKIS-certified rings must
consistently maintain valid ring control variables within en-
clave trusted memory, irrespective of the values present in
the shared untrusted memory. Since untrusted memory is
overseen by an untrusted OS, our model cannot hinge on the
consistency of untrusted values. Thus, our model ensures that
for RAKIS’s rings R, where Pt represents the trusted producer
value, Ct denotes the trusted consumer value, and St signifies
the trusted ring size, the following constraint remains valid

following any ring operation on either FIOKP primitive:

∀R : {Pt,Ct, St}, 0 ≤ (Pt −Ct) ≤ St (1)

Specifying untrusted memory access. FMs frequently ac-
cess untrusted shared memory to read and write IO data.
Often, the memory address for these operations relies on un-
trusted index provided by an untrusted host OS. For example,
to receive network frame, the XSK FM reads the index of a
UMem frame from the xRX ring. However, all untrusted mem-
ory accesses by the FM are performed on memory slots within
array-like memory objects (i.e., UMem areas and ring data
structures), which have immutable base addresses, element
counts, and element sizes. Therefore, we include constraints
in our model to ensure that all untrusted memory accesses ref-
erenced by an untrusted index points to a memory slot within
a predefined memory object which falls completely within a
larger memory segment designated as untrusted memory.
Implementation. The FM’s model checking employs sym-
bolic execution techniques. To facilitate this process, as part
of the TM, we have crafted a verification binary that lever-
ages the KLEE [5] symbolic execution engine to symboli-
cally explore all the program states of the FM. We designate
the shared untrusted memory, which the FM would use for
FIOKP operations, as input and, consequently, mark them as
symbolic. As these symbolic values traverse the various con-
trol paths of the FM, emulating interactions with the host OS,
KLEE evaluates them to ensure the resulting program state
aligns with our model. The verification binary begins by acti-
vating the FM using its initialization functions. Following this,
the verification binary utilizes FM functions to simulate vari-
ous IO tasks. For XSK operations, the binary triggers the net-
work send and receive routines, managing the symbolic XSK
rings. In contrast, for io_uring, the binary initiates the file
read and write procedures over the symbolic io_uring rings.
Throughout these IO tasks, we incorporate klee_assert state-
ments, which are symbolic validation checks used to ensure
that the FM’s trusted ring control values consistently adhere
to the constraints of our model, regardless of the utilization
of symbolic untrusted values. Ring state assert statements are
injected before and after any ring operation. The memory ac-
cess assert statements are injected before any memory access
to any untrusted memory object. Particularly, KLEE explores
all program paths of the FM and validates that there are no
paths that violate any of the constraints we specified in our
model.
Limitations. Due to limitations of KLEE, true interactions
with the host OS to operate FIOKPs are not feasible. This is
because any value extending beyond KLEE’s tested process
boundaries loses its symbolic representation (i.e., concrete-
ized). Thus, as a workaround, our verification binary treats
all values that would be acquired from the host OS, including
initialization values, as symbolic, allowing us to examine all
potential paths within the FM regardless of the concrete value
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supplied by the host OS. Additionally, KLEE lacks the capa-
bility to differentiate between trusted and untrusted memory
accesses. This limitation hinders our ability to confirm that
ring operations exclusively utilize trusted data and that ac-
cesses to untrusted ring control values are strictly limited to
read-only or write-only operations. As part of our future en-
deavors, we aim to enhance the symbolic engine’s awareness
of trust boundaries.

5.2 Fuzzing the UDP/IP stack
The XSK FMs supply the UDP/IP stack with incoming net-
work packets, representing them as pointers and lengths
within the enclave’s trusted memory. Thus, while the stack
avoids direct interaction with untrusted memory, it remains
vulnerable to manipulated packets from the host OS. To en-
hance the stack’s security, we streamlined its functionalities,
significantly reducing potential attack vectors. Following this,
we conducted a fuzzing campaign on the UDP/IP stack to
proactively identify and address vulnerabilities.
Scope. We narrow our fuzzing efforts exclusively to the
UDP/IP stack within SM. As detailed in §4.2, the UDP/IP
stack features dual entry points: one interfacing with users
for handling UDP IO syscalls and another interfacing with
the host OS to handle incoming network packets. Prioritizing
protection against potential threats from the untrusted host
OS, our fuzzing focuses specifically on incoming packets
from the host OS as the primary input source.
Implementation. As part of the TM, we developed our
fuzzing harness binary and employed AFL++[12], state-of-
the-art fuzzing tool, to execute it. The fuzzing binary ini-
tializes the UDP/IP stack, then reads packets from stdin
via AFL++ for processing. To enhance our code coverage
and broaden the program states accessible to our fuzzer, the
fuzzing binary interacts with the stack, mimicking user ac-
tions to receive packets, configure network sockets, and echo
received packets using the send routines. We launched a 144
CPU-hour fuzzing campaign across three CPU cores. This
effort yielded an 84% line coverage and 76% branch coverage.
Upon analyzing our fuzzing code coverage, we recognize the
potential to enhance it by incorporating additional emulated
user interactions, exploring varied stack states related to in-
coming data processing. Importantly, we emphasize that this
fuzzing effort is ongoing and a continuous commitment.
Limitations. A limitation of AFL++ is the absence of sup-
port for multi-threaded fuzzing. This restricts our ability to
test the stack’s parallel processing of incoming packets and
detect potential race conditions. Moving forward, we aim to
expand our fuzzing strategies by incorporating tools equipped
to identify inter-thread vulnerabilities.

6 Evaluation
We conducted all of our performance experiments in five dif-
ferent test environments: Native executes the test program

natively on the host OS, serving as the baseline of our exper-
iments results. Gramine-SGX and Gramine-Direct execute
the test program within SGX enclaves and outside SGX en-
claves, respectively, leveraging Gramine 1 , a state-of-the-art
library OS. These two configurations emphasize the perfor-
mance impact of enclave exits during syscalls. Rakis-SGX
and Rakis-Direct run the test program inside and outside of
SGX enclaves, respectively, utilizing RAKIS. These two con-
figurations underscore the performance benefits of employing
FIOKPs with unmodified user programs that use standard
POSIX syscalls (i.e., send and recv), inside and outside SGX
enclaves. We sought to incorporate additional baselines that
use fast IO primitives like DPDK in our performance evalua-
tion. To our knowledge, [39] is the only project known to use
DPDK in SGX enclaves. However, we were unable to meet
their hardware requirements. Additionally, we could not iden-
tify any projects that run unmodified programs (that use stan-
dard POSIX syscalls) on top of XDP sockets or io_uring for
non-SGX baselines. Lastly, all of our experiments were con-
ducted on a single machine equipped with Intel(R) Xeon(R)
Gold 6312U CPU @ 2.40GHz with 48 cores all on a single
NUMA node. The machine have 64GB of RAM and one NIC
with two ethernet interfaces which are wired in a loopback
configuration with link capacity of 25Gbps.

6.1 UDP IO Evaluation
RAKIS employs the XDP FIOKP to provide fast UDP IO
for unmodified user program which use regular syscall in-
terfaces such as recv and send. In our UDP IO evaluation,
we ensured the same amount of memory was allocated for
packet handling across all test environments: The Linux Ker-
nel was set with a 16MB UDP send buffer and a 2K NIC
queue length. Likewise, RAKIS’s XSKs were configured with
16MB UMems and 2K for the size of each XSK ring. For
the iperf3 and curl experiments, we employed a single XSK.
For the Memcached experiment, we utilized four XSKs each
overseen by its respective XSK FM thread.
iperf3. We employed iperf3 (v3.13) [17] to measure the UDP
socket throughput of RAKIS. In our experiment setup, the
iperf3 client operated natively within its own Linux network
namespace, whereas the iperf3 server was run under the five
settings previously outlined. We conducted 10-second UDP
throughput tests, utilizing packet sizes up to 1460 bytes to
align with standard Maximum Transmission Unit (MTU)
values. The transmission rate was set at 25Gbps, reflecting
the peak capability of our physical NIC.

Results of our iperf3 experiment are shown in Figure 4(a).
Gramine-SGX experiences an average throughput reduction
of 78% compared to Gramine-Direct (83% vs native). This
reduction occurs due to the necessity of exiting the enclave
for each UDP IO syscall. Gramine-Direct incurs an average
overhead of 25% relative to native execution. This overhead

1We used Gramine-v1.5, the latest release at the time of our experiments.
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Figure 4. Evaluating UDP IO performance: iperf3 network test, Curl download duration, and Memcached throughput across Native, RAKIS-
Direct, RAKIS-SGX, Gramine-Direct, and Gramine-SGX test environments.

becomes particularly evident with smaller packet sizes, high-
lighting the amplified LibOS overhead due to frequent calls.
Conversely, RAKIS-Direct leverages an XSK to achieve an
average 11% increase in UDP throughput compared to na-
tive execution, all without necessitating modifications to user
programs. RAKIS-SGX experiences no overhead relative to
RAKIS-Direct since both leverage shared memory for IO,
thereby eliminating enclave exit costs.
Curl. Curl [8] is a command-line tool used for transferring
data over various network protocols. Recently, experimental
support for the QUIC protocol over UDP has been added
to Curl [9]. In our experiment, we set up a web server run-
ning natively on the same machine to serve files of sizes
ranging from 10MB to 1GB via the QUIC protocol. Subse-
quently, we evaluated the total time to download the files
using Curl. Figure 4(b) shows that Gramine-SGX, on average,
exhibits 2.5x longer download times than native execution.
Conversely, RAKIS achieves comparable download times to
native execution, whether inside or outside SGX enclaves.
Memcached. Memcached [29] is a high-performance, dis-
tributed memory caching system that stores and retrieves data
in key-value pairs. Memcached supports communication with
clients over UDP protocol. To benchmark our Memcached
deployment, we employed memaslap, a load generation and
benchmark tool specifically designed for Memcached servers.
In our experiment, the Memcached server operated within our
five test environments, while the benchmark client functioned
natively within its dedicated Linux network namespace. We
set up the benchmark client with four threads and 32 simulta-
neous connections. Meanwhile, we conducted the experiment
multiple times, adjusting the Memcached server to utilize
varying thread counts. The results of our Memcached ex-
periment are presented in Figure 4(c). RAKIS consistently
matches native execution performance for Memcached across
varying thread counts, both inside and outside the enclave. In
addition, RAKIS-SGX achieves an impressive 4.6x average
throughput enhancement compared to Gramine-SGX. Inter-
estingly, the results show a slight performance advantage of
Gramine-Direct over Native when Memcached runs with four
threads. This advantage arises because Gramine-Direct can

handle some futex syscalls internally without a syscall con-
text switch, thus eliminating the associated overhead. This
behavior is analogous to RAKIS, which also avoids context
switches for IO syscalls, which is particularly beneficial in
workloads with frequent IO syscalls, minimal userspace pro-
cessing, and no thread or lock management, such as iperf3,
Curl, and single-threaded Memcached.

6.2 TCP and File IO Evaluation
RAKIS employs the io_uring FIOKP to enable TCP and file
IO for unmodified user program. Our evaluation comprises
benchmarks for file writing, a TCP-intensive program, and a
file-intensive program.
fstime. In order to evaluate the file write throughput in
RAKIS, we utilized the fstime tool from the UnixBench
suite [41]. The test involved performing repeated writes to
a single file using the write syscall with a provided block
size for a specified duration. We conducted the test multi-
ple times, with block sizes increasing exponentially, and then
took the average of the results from five test iterations. Our ex-
periment results are depicted in Figure 5(a). Gramine-Direct
incurs added overhead due to LibOS handling, which tends
to decrease with increased data sizes due to fewer calls. Com-
pared to native execution, both RAKIS-Direct and RAKIS-
SGX experience overheads due to utilization of asynchronous
io_uring operations. Specifically, when employing io_uring
for synchronous write operations, it necessitates waiting for
another thread to execute the task instead of allowing synchro-
nous execution within the same thread. In addition, for larger
block sizes, RAKIS-SGX exhibits increased overhead rela-
tive to RAKIS-Direct, attributable to memory copy operations
from encrypted enclave memory to shared untrusted memory
as detailed in previous works [42]. However, RAKIS-SGX
maintains a 2.8x performance advantage over Gramine-SGX
due to the cost associated with enclave exits in Gramine-SGX.
Redis. Redis [35] is an open-source, in-memory data struc-
ture store. Redis clients communicate with the Redis server
over TCP. For benchmarking performance, we employed
a built-in benchmarking client called redis-benchmark, fo-
cusing on three Redis commands: Ping, Set, and Get. As
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Figure 5. Evaluating TCP and file IO performance: fstime file write test, Redis throughput, and MCrypt encryption time across Native,
RAKIS-Direct, RAKIS-SGX, Gramine-Direct, and Gramine-SGX test environments.

RAKIS does not currently support epoll syscall, we com-
piled Redis to use the select syscall instead. We ran the
redis-benchmark tool natively with one thread and 50 par-
allel connections. In Figure 5(b), we show the normalized
throughput of Redis across our five test environments. On
average, RAKIS-SGX surpasses Gramine-SGX by 2.6x in
performance. Nevertheless, when compared to native exe-
cution, both RAKIS-Direct and RAKIS-SGX demonstrate an
average overheads of 30% and 40%, respectively.
MCrypt. MCrypt [28] is a command-line tool used for en-
crypting files with various encryption algorithms. For our
experiment, we encrypt a 1GB file utilizing varying file read
block sizes. As shown in Figure 5(c), on average, RAKIS
exhibits 3% overhead compared to native execution, while
demonstrating a 10% reduction in execution time compared
to Gramine-SGX.

7 Discussion
Data protection. Like prior works that enable IO syscalls
via enclave exits [1, 3, 6], RAKIS lacks inherent mechanisms
to ensure the confidentiality or integrity of user data during
IO operations. User applications can depend on application-
layer protocols such as Transport Layer Security (TLS) for
these protections. However, RAKIS integrates a UDP/IP stack
within the enclave, enabling the integration of layer-3 tun-
nels like Wireguard [10]. This capability paves the way for
efficiently running programs needing protection over layer-
3 network packets, such as software switches, within SGX
enclaves without reliance on host OS trust.
Resource utilization. In total, RAKIS requires the use of a
minimum of two additional user threads: one inside the en-
clave to process incoming network packets on a XSK (FM),
and another outside the enclave to ensure the host OS handles
RAKIS’s IO requests promptly (MM). For memory, RAKIS
maintains an in-enclave packet queue to buffer incoming
packets before transferring them to the user-provided buffer.
Outside the enclave, RAKIS manages the UMem for XSK,
along with the io_uring and XSK ring structures. These
memory parameters can be configured based on the user’s

workload. Compared to previous works, RAKIS does not in-
cur additional resource requirements. For example, the design
of Rkt-IO [39] incurs higher resource requirements by in-
corporating DPDK inside SGX enclaves, which necessitates
additional CPU cores and memory to manage SGX-LKL [34]
for filesystem and TCP/IP operations. This increase in re-
source demand is due to DPDK heavy runtime requirements,
even for single-threaded user applications running within the
enclave.
TCP Stack Considerations. RAKIS employs io_uring
primitive for TCP IO operations. While it’s feasible to in-
corporate a TCP stack into RAKIS’s network stack to utilize
the XDP primitive for TCP IO, we chose not to pursue this
avenue. Introducing a TCP stack inside the SGX enclave
would considerably enlarge the TCB of RAKIS due to the
substantial size and complexity of the TCP stack, conflicting
with RAKIS’s design objectives. Moreover, the established
maturity of the Linux kernel’s TCP stack, coupled with its
access to hardware acceleration in modern NICs, significantly
enhances its TCP performance. Attempting to replace this
optimized stack within the enclave would entail substantial
resource and performance compromises.
Deployment Simplicity. One standout feature of RAKIS is
its ease of deployment. Specialized hardware is not necessary;
all that is needed is a recent kernel equipped with XDP and
io_uring capabilities. RAKIS’s setup is streamlined, neces-
sitating only essential networking parameters such as MAC
address, IP address, and the specific NIC queue ID for XSK
configuration. With its user-friendly setup, performance ben-
efits, and uncompromised security, RAKIS offers an ideal
blend for widespread adoption.
SGX future. SGX remains the only technology that provides
a secure execution environment with a small TCB, particu-
larly for scenarios where the OS and VMM are untrusted.
Although Confidential Virtual Machines (CVMs) are gaining
popularity, Intel SGX continues to be the preferred choice
for solutions requiring strong security. For example, IBM
employs SGX for the e-prescription system for the entire
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German population [30], Signal uses it for their secure mes-
senger [7] and FlashBots runs blockchain blocks builders
within enclaves [13].

8 Related work
High-performance IO for SGX enclave programs. Sev-
eral works have proposed approaches to provide high-
performance IO in SGX enclaves [2, 33, 39, 40]. These works
involve pulling entire userspace kernel-bypass libraries, such
as DPDK [11] and SPDK [38], into the enclave to enable
direct IO access for enclave programs. However, they suffer
from several drawbacks: 1) Significant increase in TCB size.
DPDK consists of 1.9M LoC, while SPDK consists of 300K
LoC. This results in a large TCB footprint. 2) Difficulty in
deployment. Both DPDK and SPDK have specific hardware
requirements that must be met for successful deployment. 3)
Inclusion of unnecessary components. DPDK, for example,
requires heavy OS features such as thread scheduling and
direct IO access, which may not be needed by the enclave
program. Finally, a study by Lefeuvre et al. [24] focused on
secure and efficient IO within SGX enclaves, emphasizing
attributes like security-by-design, high performance, and in-
dependence from specific TEE implementations. We believe
that RAKIS’s design aligns closely with the study’s insights.
Shielded execution for unmodified programs. Frame-
works such as [1, 3, 6, 34, 36, 37] are utilized to facilitate
the deployment of applications within SGX enclaves with-
out modifications. These frameworks provide a LibOS that
would serve as an intermediary layer that abstract and handle
syscalls within the enclave environment.
Switchless enclave syscalls. Frameworks like [6, 31, 34, 34,
42] address IO bottlenecks in TEEs by employing switchless
asynchronous IO calls. This technique eliminates the need for
expensive SGX enclave exits and leverages IO threads outside
the enclave to enhance IO performance through asynchronous
syscalls.
Use cases for shielded execution. Since its introduction,
SGX enclaves have been utilized in diverse applications
such as secure storage [23], data analytics [45], decentral-
ized ledger [26] and content delivery networks [14]. In all
these use cases, the IO overhead stemming from enclave ex-
its posed challenges, leading to workarounds like external
IO worker threads or simply accepting it as a trade-off for
shielded execution. We anticipate that RAKIS can advance
current practices, fostering greater adoption of SGX enclaves.

9 Conclusion
In conclusion, this paper introduces RAKIS, an end-to-end
system designed to securely enable Linux FIOKPs within
SGX enclaves. RAKIS seamlessly integrates with unmod-
ified user applications, maintaining standard syscall inter-
faces while effectively minimizing the expansion of the TCB

size. Through extensive benchmarking and real-world eval-
uations, RAKIS demonstrates notable performance enhance-
ments in network and file IO within SGX enclaves compared
to Gramine.
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1 int io_uring_queue_init(unsigned entries, struct io_uring *ring,
2 unsigned flags);
3
4 struct io_uring_sqe* io_uring_get_sqe(struct io_uring *ring) {
5 struct io_uring_sq *sq = &ring->sq;
6
7 // pointer dereference potentially pointing inside enclave
8 unsigned int head = IO_URING_READ_ONCE(*sq->khead);
9 unsigned int next = sq->sqe_tail + 1;

10
11 if (next - head <= sq->ring_entries) {
12 struct io_uring_sqe *sqe;
13
14 sqe = &sq->sqes[sq->sqe_tail & sq->ring_mask];
15 sq->sqe_tail = next;
16 return sqe;
17 }
18
19 return NULL;
20 }

Figure 6. Code in liburing where a malicious host OS can commence
data exfiltration from enclave memory

A Case study: liburing with untrusted OS
In Figure 6, within the function io_uring_queue_init de-

fined in Line 1, liburing initializes an io_uring context
without verifying host OS provided values. This absence of
validation means that the host OS can provide deceptive or ma-
licious values during setup, potentially undermining the sys-
tem’s integrity. Later, within the function io_uring_get_sqe
that is exported to be used by liburing users, there’s a di-
rect dereference of the pointer sq->khead (Line 8), which is
provided by the host OS during initialization of the io_uring
context. If liburing were running inside SGX, and the
sq->khead pointer referenced enclave memory, an untrusted
host OS can exploit the trust of liburing to read sensitive en-
clave data. The vulnerability becomes evident in Line 11: By
observing the difference between the producer and consumer
indices (next and sq->khead), combined with the knowledge
of ring_entries which holds the ring’s size, the host OS
can effectively deduce the specific content pointed to by
sq->khead by observing if the enclave program produces
an IO request as a result of returning an sqe in Line 16. This
deduction leverages the predictable behavior and structure
of the shared ring, allowing the host OS to indirectly access
enclave data based on observed ring patterns and values.

B Artifact Appendix
B.1 Abstract
RAKIS integrates fast IO primitives within SGX enclaves to
reduce enclave exits and significantly boost IO performance.
Our prototype implements two Linux kernel IO primitives for
use within SGX enclaves: AF_XDP [19] and io_uring [16].
We demonstrate RAKIS’s performance benefits through evalu-
ations on four real-world applications and two benchmarking
tools.

B.2 Description & Requirements
B.2.1 How to access. RAKIS is publicly available on
Github (https://github.com/sslab-gatech/RAKIS) and Zenodo
(https://zenodo.org/records/13800030).

B.2.2 Hardware dependencies.

• Intel CPU with SGX [15] support.
• Two free Ethernet interfaces wired in loopback config-

uration.

B.2.3 Software dependencies. As RAKIS is a fork of
Gramine [6], it shares the same software dependencies. For de-
tails, refer to https://gramine.readthedocs.io/en/stable/devel/
building.html.

B.2.4 Benchmarks. In our experiments, we used two
benchmarking tools: iperf3 [17] and fstime [41], along with
four real-world programs: Memcached [29], Curl [8], Redis
[35], and MCrypt [28].

B.3 Setup
We provided the exact commands in our repository’s
README.md file to set up the environment and reproduce our
results. These commands configure the network between
the two Ethernet interfaces, place them in separate network
namespaces, and set up the NIC queues where XDP programs
will be attached.

B.4 Evaluation workflow
We use Makefiles to automate the reproduction of our pa-
per’s results, with targets prefixed by eurosys-reproduce to
initiate each experiment. The repository also contains a hier-
archical structure of README.md files, starting with a top-level
file that includes a section titled "Eurosys artifact reviewers",
which provides guidance on the reproduction process and
details for navigating the artifacts.

B.4.1 Major Claims.

• (C1): RAKIS utilizes XDP IO primitive to achieve an
average 11% increase in UDP throughput in iperf3
benchmark while running in SGX enclave compared
to native execution. This is proven by experiment (E1)
whose results are illustrated in Figure 4(a).

• (C2): In the Curl benchmark using the QUIC protocol,
RAKIS eliminates the enclave-exit overhead and ex-
hibits comparable download times to native execution.
This is proven by experiment (E2) whose results are
illustrated in Figure 4(b).

• (C3): RAKIS efficiently handles multi-threaded work-
loads and consistently matches native execution perfor-
mance on the Memcached benchmark. This is proven
by experiment (E3) whose results are illustrated in Fig-
ure 4(c).

https://github.com/sslab-gatech/RAKIS
https://zenodo.org/records/13800030
https://gramine.readthedocs.io/en/stable/devel/building.html
https://gramine.readthedocs.io/en/stable/devel/building.html
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• (C4): RAKIS-SGX showcases a 2.8X performance ad-
vantage over Gramine-SGX in the fstime write bench-
mark as proven by experiment (E4) whose results are
illustrated in Figure 5(a).

• (C5): RAKIS-SGX showcases a 2.6X performance ad-
vantage over Gramine-SGX in the Redis benchmark as
proven by experiment (E5) whose results are illustrated
in Figure 5(b).

• (C6): RAKIS-SGX demonstrates a 10% reduction in ex-
ecution time compared to Gramine-SGX in the MCrypt
benchmark as proven by experiment (E6) whose results
are illustrated in Figure 5(c).

B.4.2 Experiments. For brevity, we refer to the README.md
files in the RAKIS code repository for detailed explanations
of the experiments. All necessary commands to run the ex-
periments are automated via Makefile scripts. The specific
experiments can be found in the following directories:

• (E1): CI-Examples/iperf3/.
• (E2): CI-Examples/curl/.
• (E3): CI-Examples/memcached/.
• (E4): CI-Examples/unix-benchmark/.
• (E5): CI-Examples/redis/.
• (E6): CI-Examples/mcrypt/.
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