
RUG: Turbo LLM for Rust Unit 
Test Generation

Xiang Cheng, Fan Sang, Yizhuo Zhai, Xiaokuan Zhang*, and Taesoo Kim

Georgia Institute of Technology, *George Mason University

1



• Motivating

• Challenge & Insights

• Solution
o LLM

o Fuzzing

• Evaluation

2

Content



• From DARPA/Microsoft/Linux/Google: use Rust to ensure memory safety
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Rust’s Adoption is very Fast

Picture: from chrome/windows/android/Rust-for-linux homepage



• AOSP starts to use Rust in 2019

• The total number of memory safety errors starts to drop even with unsafe Rust
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From Android’s Practice

Picture: Google Online Security Blog: Eliminating Memory Safety Vulnerabilities at the Source

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html


• Unit test is a type of software test that focuses on testing individual units or 
components of a program in isolation.

• Rust has a good support to unit test:​
• Annotations #[test] to mark a region as test​

• Temporally break encapsulation when testing in the same file

• Provide driver build for all the tests:​
• cargo test – run all tests in the target repo
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Rust Unit Testing



• Crates.io is like npm/maven/pip, serves as the dependency manager in Rust
• As of Dec 2024, serves 164k crates, and more than 96B downloads

• We evaluate the top 30K popular crates
• 60% crates have less than 10% test coverage

• 16% crates doesn’t have any tests
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Unit testing status of Rust
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Content



• Unit test requires to build a minimal context to trigger the target function, it’s not 
easy to implement in some cases 
• Rust is applied for low-level systems: embedding device, OS driver…

• Developers are tired of writing unit tests:
• E.g. 3 conditions + 2 loops to test
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Why unit test is difficult



• Chain-of-thought is proven to be effective for LLM reasoning
• => RUG uses type dependencies to automatically apply chain of thought

• The result of each subproblem needs to be verified, otherwise the error will 
accumulate 
• => RUG verifies the result for each subproblem, ensuring the final correctness

• The LLM isn’t good at exploring program paths 
• => RUG leverages fuzzing as post-processor to extend the testing coverage
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Insight: LLM + Fuzzing
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• Challenge: to build the testing context, LLM is expected to correctly built all its 
necessary dependents in one shot, leading to errors

• Semantic aware decomposition: Type has dependencies, RUG automatically 
decomposes the context building into sub-problems 
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Semantic Aware Decomposition



12

• Build type dependency graph as G = {E, V}, V denotes type entities and E 
denotes dependency relations, G is directed

• Divide the context generation into sub-problems and resolve them individually

• Rely on static analysis to guide and verify the LLM output



• Semantic Aware Decomposition
• We minimize the context for each iteration (only the direct dependent instances in the green 

square)

• We verify the result of each iteration output to ensure the correctness

• We memorize the result based on type and saves tokens in project scope

• Corner Cases:
• Cycles: we will randomly decide the order and use natural language description of the 

dependencies as context

• LLM failed in the middle: we will mark the node as unfinished and continue, using natural 
language description of dependencies

• Candidate selection: our evaluation shows its influence is limited for different strategies 
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Pros and Corner Cases



• Fuzzers are efficient to explore different paths in few seconds

• We build a harness transformation program based on Rustc to convert the 
generated tests into fuzzing harnesses

• To control the number of unit tests, we propose a greedy selection and ranking 
algorithm to select the fuzzing inputs

14

Fuzzing as post-processing



• How efficient is our approach compared with traditonal Rust/unit testing tools?

• How efficient is our problem division compared with other LLM based tools?

• How efficient is fuzzing?

• Can RUG be applied in real-world software development?
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Evaluation

https://github.com/cxworks/rug

https://github.com/cxworks/rug


• RustyUnit: SBST in Rust

• SyRust: SAT based Rust 
synthesizer 

• RUG: using GPT-3.5
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RUG vs Synthesizing Tools 



• RustyUnit: SBST in Rust

• SyRust: SAT based Rust 
synthesizer 

• RUG: using GPT-3.5

• RUG out-performs both tools 
for 20.14% and 21.63%

17

RUG vs Synthesizing Tools 

RUG improves RustyUnit 

coverage by 20.14%

RUG improves SyRust 

coverage by 21.63%



• RULF: type dependency based fuzzing harness generator for Rust

• RPG: improved RULF with harness selection algorithm

• RUG achieves 54.9% code coverage, while RULF as 25.2% and RPG has 41.7%
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RUG vs Fuzzing based Testing



• RULF: type dependency based fuzzing harness generator for Rust

• RPG: improved RULF with harness selection algorithm

• RUG: using GPT-3.5

• RUG achieves 54.9% code coverage, while RULF as 25.2% and RPG has 41.7%
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RUG vs Fuzzing based Testing

RUG improves coverage by 13.2% - 19.7% 



20

RUG vs LLM Approach

• Base: RUG improves baseline for 21.81% in GPT-3.5 and 10.20% in GPT-4

• Sensitivity test of RUG for: GPT model/fuzzing/problem decomposition
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RUG vs LLM Approach

• Base: RUG improves baseline for 21.81% in GPT-3.5 and 10.20% in GPT-4

• Sensitivity test of RUG for: GPT model/fuzzing/problem decomposition

RUG improves baseline for 10.2%-21.8%
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RUG vs LLM Approach(cont’d)

• Base: RUG improves baseline for 21.81% in GPT-3.5 and 10.20% in GPT-4

• Sensitivity test of RUG for: GPT model/fuzzing/problem decomposition

RUG with GPT-4 

generates comparable 

tests to human developers



• We run the project’s original test and compare with RUG, find the coverage 
differences

• For the untested regions, we submit RUG’s tests as Pull Request to the project
• 113 tests submitted: 53 merged/17 rejected/43 pending for response
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Evaluation on real world development

#[test]

fn test_unfill_consecutive_different_prefix() {

let (text, options) = unfill("foo\n*\n/");

assert_eq!(text, "foo * /");

...
}



• We run the project’s original test and compare with RUG, find the coverage 
differences

• For the untested regions, we submit RUG’s tests as Pull Request to the project
• 113 tests submitted: 53 merged/17 rejected/43 pending for response

• RUG received positive feedback
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Evaluation on real world development

RUG can help developer in 

submit missed unit tests with 

53/70 accepted cases

“The PR looks good, 
great job at finding 
a test case to 
improve the coverage 
like this.”



• RUG leverages program analysis to guide LLM for Rust unit test generation and 
address the concerns of compiling errors

• RUG can help developers to build uncovered tests and achieves a coverage 
comparable with experienced human efforts
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Conclusion

Thanks for listening

Code, AEPaper
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