y

RUG: Turbo LLM for Rust Unit
Test Generation

0 .
GEORG SO Georgia
1 SSLabi GMgesmsnr Grox

Content

* Motivating
« Challenge & Insights

e Solution
o LLM
o Fuzzing

e Evaluation

Cr

Georgia
Tech.

Rust’'s Adoption is very Fast

« From DARPA/Microsoft/Linux/Google: use Rust to ensure memory safety

phoronix

ARTICLES & REVIEWS NEWS ARCHIVE FORUMS PREMIUM CONTACT O CATEGORIES

Looking For The Dark Theme? CSS dark mode support for Phoronix is available by joining Phoronix Premium

Google To Allow Rust Code In The Chromium Browser

Written by Michael Larabel in Google on 12 January 2023 at 03:43 PM EST. 111 Comments

Google announced today that moving forward they will be allowing Rust code into the
Chromium code-base, the open-source project that ultimately served as the basis for
their Chrome web browser.

Google

android

Georgia
3 Gl" Tech.

Picture: from chrome/windows/android/Rust-for-linux homepage

From Android’s Practice

 AOSP starts to use Rust in 2019
* The total number of memory safety errors starts to drop even with unsafe Rust

Number of Memory Safety Vuins per Year New Memory Unsafe Code and Memory safety Vulns

250
B New Memory Unsafe Code [l Memory safety Vulns == 70% Memory Safety Industry Norm
200 80
150 60
©
o _
100 g 40
|_
R
50
20

0

2019 2020 2021 2022 2023 2024

2019 2020 2021 2022 2023 2024

year

year

Georgia
4 GI‘ Tech.

Picture: Google Online Security Blog: Eliminating Memory Safety Vulnerabilities at the Source

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

Rust Unit Testing

» Unit test is a type of software test that focuses on testing individual units or
components of a program in isolation.

» Rust has a good support to unit test:
 Annotations #[test] to mark a region as test
« Temporally break encapsulation when testing in the same file

 Provide driver build for all the tests:
« cargo test — run all tests in the target repo

Georgia
5 Gl" Tech.

Unit testing status of Rust

 Crates.io is like npm/maven/pip, serves as the dependency manager in Rust
« As of Dec 2024, serves 164k crates, and more than 96B downloads

» We evaluate the top 30K popular crates 5,000 — . .
 60% crates have less than 10% test coverage 1(0%, 4608) —+— Coverage Distribution
* 16% crates doesn'’t have any tests 4,000 |
% 3,000 |-
Q
e
= 20001 19 1833)
z
1,000 |-
0 At -
| | |
0 20 40 60 80 100

6 Unit Test Coverage Percent(%)

Content

« Challenge & Insights

e Solution
o LLM
o Fuzzing

e Evaluation

Cr

Georgia
Tech.

Why unit test is difficult

 Unit test requires to build a minimal context to trigger the target function, it's not
easy to implement in some cases

* Rust is applied for low-level systems: embedding device, OS driver...

pub fn unfill(text: &str) -> (String, Optlons<’ >) {

 Developers are tired of writing unit tests: Let prefix_chars: 811 = &[° ", ', "+,) 2%, HL /L
» E.g. 3 conditions + 2 loops to test T T———

or (idx, line) in text.lines().enumerate() {

options.width = std::cmp::max(options.width, display width(line));
let without prefix = line.trim start matches(prefix chars);

let prefix = &line[..line.len() - without prefix.len()];

if idx == 0 {
options.initial indent = prefix;
} else if idx == 1 {
gotions subseguent indent — prefix:
I } else if idx > 1 {
for ((idx, x), y) in prefix.char_indices().zip(options.subsequent indent.chars()) {I
| if x 1=y { |
options.subsequent indent = &prefix[..idx];

break;
¥
}
if prefix.len() < options.subsequent indent.len() {

options.subsequent indent = prefix;

8 }

Insight: LLM + Fuzzing

 Chain-of-thought is proven to be effective for LLM reasoning
« =>RUG uses type dependencies to automatically apply chain of thought

* The result of each subproblem needs to be verified, otherwise the error will

accumulate
« =>RUG verifies the result for each subproblem, ensuring the final correctness

 The LLM isn’'t good at exploring program paths
« =>RUG leverages fuzzing as post-processor to extend the testing coverage

Georgia
9 Gl" Tech.

Content

e Solution
o LLM
o Fuzzing

e Evaluation

10

Cr

Georgia
Tech.

Semantic Aware Decomposition

» Challenge: to build the testing context, LLM is expected to correctly built all its
necessary dependents in one shot, leading to errors

« Semantic aware decomposition: Type has dependencies, RUG automatically
decomposes the context building into sub-problems

1 fn encode<E: Encoder> (&self :char, encoder: E)
-> Result<EncodeError> // target testing function
3 // def for EncoderImpl
s+ pub struct EncoderImpl<W, C: Config>
5 // impl for Encoder trait
6 impl<W: Writer, C: Config> Encoder for EncoderImpl
7 // impls for Writer Trait
g impl Writer for SliceWriter
o impl enc::write::Writer for IoWriter
w // impls for Config Trait
n pub trait Config: R1 + R2 + R3 {}
12 impl<T> Config for T where T: R1 + R2 + R3 _
1 13 // def for Configuration, impls R1l, R2, R3 Gr%ggi‘lgm
14 pub struct Configuration<A = R1l, B = R2, C = R3>

B

o oo s | (=33 wa . L (] —

[ay
=

[
=

12

13

fn encode<E: Encoder> (&self :char, encoder: B)
-> Result<EncodeError> // target testing function
// def for EncoderImpl
pub struct EncoderImpl<W, C: Config>
// impl for Encoder trait

impHi: Writep,(C: Config>JEncoder forcEncoderTnply

// impls for-Writer Trait

impl Writer forSliceWriter >

impl enc::write::Writer far

// impls for Config Trait

pub trait Config: R1 + R2 + R3 {}

imnl<T> Config for T where T: R1 + R2 + R3
//_def for Configuration, impls R1,~R2, R3

oot sTruct Configurationh = RT, B = R2, T=ro> |

12

loWriter

Writable

SliceWriter
Configuration

R1

 Build type dependency graph as G = {E, V}, V denotes type entities and E

denotes dependency relations, G is directed

* Divide the context generation into sub-problems and resolve them individually
 Rely on static analysis to guide and verify the LLM output

Cr

Georgia
Tech.

Pros and Corner Cases

« Semantic Aware Decomposition

« We minimize the context for each iteration (only the direct dependent instances in the green
square)

« We verify the result of each iteration output to ensure the correctness
« We memorize the result based on type and saves tokens in project scope
« Corner Cases:

 Cycles: we will randomly decide the order and use natural language description of the
dependencies as context

« LLM failed in the middle: we will mark the node as unfinished and continue, using natural
language description of dependencies

« Candidate selection: our evaluation shows its influence is limited for different strategies

Georgia
13 Gl" Tech.

Fuzzing as post-processing

* Fuzzers are efficient to explore different paths in few seconds

» We build a harness transformation program based on Rustc to convert the
generated tests into fuzzing harnesses

» To control the number of unit tests, we propose a greedy selection and ranking
algorithm to select the fuzzing inputs

Georgia
1 Gl" Tech.

» How efficient is our approach compared with traditonal Rust/unit testing tools?
« How efficient is our problem division compared with other LLM based tools?

« How efficient is fuzzing?

« Can RUG be applied in real-world software development?

OFsaa0

https://qithub.com/cxworks/rug

Georgia
Tech

https://github.com/cxworks/rug

RUG vs Synthesizing Tools

* RustyUnit: SBST in Rust

« SyRust: SAT based Rust
synthesizer

* RUG: using GPT-3.5

16

Func Region Func Region

Crate RustyUnitg RUG ;
gamie 55.54% 30.79% 68.67% 72.24%
humantime 45.55% 26.67% 50.33% 64.92%
Isd 32.58% 40.23% 37.66% 43.98%
quick-xml 17.38% | 24.61% 54.5% 62.76%
tight 24.70% 30.27% 32.24% 36.90%
time 75.26% 70.78% 68.13% 56.94%
mean 37.23% | 34.70% | 49.96% | 54.84%

SyRust RUG

data-structure | 26.11% 31.19% 52.10% 56.03%
encoding 30.69% | 28.51% | 5547% | 48.54%
mean 28.40% | 30.65% | 53.79% | 52.28%

Georgia
Gl" Tech.

RUG vs Synthesizing Tools

* RustyUnit: SBST in Rust

* SyRust: SAT based Rust Crate Func | Region | Func | Region
. gamie 55.54% | 30.79% | 68.67% | 72.24%
* RUG: using GPT-3.5 humantime 5.
* RUG out-performs both tools 1sd 22 RUG improves RustyUnit
ight 24,
time 75.5 ‘
mean 3723% | 34.70% | 49.96% | 54.84%
SyRust RUG

%

data-structure 26.
encoding
mean

30.
73 RUG improves SyRust

coverage by 21.63%

17

Code Region Coverage(%)

RUG vs Fuzzing based Testing

» RULF: type dependency based fuzzing harness generator for Rust
« RPG: improved RULF with harness selection algorithm
« RUG achieves 54.9% code coverage, while RULF as 25.2% and RPG has 41.7%

82.3

RULF' ' RPG I ERUG

co
=
|

73.6

75.
65.6 66.4 67.2 67.0
60.6- 631 59.60.4 63.3
54.35. 54.9
1 6.9 50.5
43. a1,
37.
32.8
22.1 - 25.2
. 16.2
8.2 7.7 8.8 7.5
4.0
0.0
- = T | | |)) 1

| | | | |
clap flate regex PYOC t1me semver r-syntax S-pars€r - json http* xi-editor ~Mecan

Georgia
GI‘ Tech.

oy D
= =
| |
o
=

Do
=
|
=
o
=

=

Code Region Coverage(%)

RUG vs Fuzzing based Testing

» RULF: type dependency based fuzzing harness generator for Rust

« RPG: improved RULF with harness selection algorithm

* RUG: using GPT-3.5

« RUG achieves 54.9% code coverage, while RULF as 25.2% and RPG has 41.7%

RULFl "RPG I BRUG

RUG improves coverage by 13.2% - 19.7% I II

clap flate regex proc time ~ SCMVer url tui r-syntax S-parser json http* xi-editor ~Mecan

Georgia
G.'I." Tech.

co
=
|

=~ (=)
= =
| [

DD
=
[

o
|

RUG vs LLM Approach

« Base: RUG improves baseline for 21.81% in GPT-3.5 and 10.20% in GPT-4

 Sensitivity test of RUG for: GPT model/fuzzing/problem decomposition

Crate Name Tests GPT-3.5 GPT-4 Human
(Downloads) ac/rej Base RUG Base RUG Newly API Test
w/o w. fuzzing w/o w. fuzzing w/o w. fuzzing w/o w. fuzzing Cov Rate Coverage
bincode(49M) 4/0 1.57% 1.57% 22.92% 23.91% 16.63% 18.79% 44.67% 47.91% 74.11% 64.58 %
chrono(128M) 22/13 37.88% 44.07% 47.2% 58.29% 54.04% 59.24% 56.90% 62.67% 73.05% 76.66 %
hashes(266M) P(7) 43.84% 43.84% 68.28% 68.28% 57.71% 57.71% 68.96% 85.16% 61.41% 85.17%
humantime(98M) P(5) 63.09% 64.40% 67.02% 75.39% 74.08% 75.92% 74.61% 80.37 % 40.00% 79.32%
itoa(221M) 1/0 26.00% 26.00% 82.00% 96.00% 96.00% 98.00% 100.00% 100.00 % 83.33% 86.00%
json(203M) - 28.10% 35.69% 44.60% 52.07% 62.26% 67.00% 70.25% 70.49% 47.33% 72.36 %
mio(145M) - 20.47% 20.47% 25.20% 25.20% 26.77% 26.77% 33.86% 33.86% 38.89% 24.19%
nom(114M) 6/1/P(14) | 25.81% 25.81% 39.93% 40.04% 51.13% 51.17% 53.84% 53.87% 28.64% 76.20 %
num-traits(185M) - 36.02% 36.47% 43.20% 43.95% 46.94% 46.94% 47.23% 47.98% 90.36% 50.58 %
demangle(93M) P(14) 21.32% 21.62% 21.83% 65.99% 20.00% 74.82% 26.60% 76.55% 18.75% 72.25%
crc32fast(104M) - 62.35% 64.71% 70.59% 71.76% 87.06% 88.24% 87.06% 88.24% 92.86% 68.24%
ryu(185M) 0/3 52.51% 95.28% 61.65% 97.64% 76.40% 99.42% 81.72% 99.42 % 100.00% 87.85%
semver(168M) 18/0 61.40% 62.96% 62.54% 73.36% 72.36% 74.64% 74.22% 76.50% 95.24% 84.33%
textwrap(134M) 1/0 88.84% 92.56% 90.15% 94.31% 92.78% 94.75% 92.56% 94.97 % 83.34% 87.53%
time(200M) P(3) 33.08% 35.06% 48.98% 51.72% 55.34% 55.34% 79.89% 79.89% 66.06% 96.48 %
toml(125M) - 32.43% 37.06% 47.28% 49.02% 59.58% 64.40% 38.90% 38.90% 25.14% 70.81%
uuid(108M) 1/0 58.66% 64.44% 69.30% 77.20% 73.86% 75.08% 75.68% 76.60% 88.89% 61.40%
mean - 40.79% 45.41% 53.69% 62.60% 60.17% 66.37% 65.11% 71.37% 65.14% 73.18%
Identifier ® @ © ®) ® ® © ® @ @

RUG vs LLM Approach

« Base: RUG improves baseline for 21.81% in GPT-3.5 and 10.20% in GPT-4

 Sensitivity test of RUG for: GPT model/fuzzing/problem decomposition

Crate Name Tests GPT-3.5 GPT-4 Human
(Downloads) ac/rej Base RUG Base RuG Newly API Test
w/o w. fuzzing w/o w. fuzzing w/o w. fuzzing w/o w. fuzzing Cov Rate Coverage
bincode(49M) 4/0 1.57% 1.57% 22.92% 23.91% 16.63% 18.79% 44.67% 47.91% 74.11% 64.58 %
chrono(128M) 22/13 37.88% 44.07% 47.2% 58.29% 54.04% 59.24% 56.90% 62.67% 73.05% 76.66 %
hashes(266M) P(7) 61.41% 85.17%
humantime(98M) P(5) 40.00% 79.32%
itoa(221M) 1/0 83.33% 86.00%
json(203M) - - - 0 0 47.33% 72.36 %
e : RUG improves baseline for 10.2%-21.8% o | S
nom(114M) 6/1/P(14) 28.64% 76.20 %
num-traits(185M) - 90.36% 50.58 %
demangle(93M) P(14) S— S— o ro—re - S oo] : 18.75% 72.25%
crc32fast(104M) - 62.35% 64.71% 70.59% 71.76% 87.06% 88.24% 87.06% 88.24% 92.86% 68.24%
ryu(185M) 0/3 52.51% 95.28% 61.65% 97.64% 76.40% 99.42% 81.72% 99.42% 100.00% 87.85%
semver(168M) 18/0 61.40% 62.96% 62.54% 73.36% 72.36% 74.64% 74.22% 76.50% 95.24% 84.33%
textwrap(134M) 1/0 88.84% 92.56% 90.15% 94.31% 92.78% 94.75% 92.56% 94.97 % 83.34% 87.53%
time(200M) P(3) 33.08% 35.06% 48.98% 51.72% 55.34% 55.34% 79.89% 79.89% 66.06% 96.48 %
toml(125M) - 32.43% 37.06% 47.28% 49.02% 59.58% 64.40% 38.90% 38.90% 25.14% 70.81%
uuid(108M) 1/0 58.66% 64.44% 69.30% 77.20% 73.86% 75.08% 75.68% 76.60 % 88.89% 61.40%
mean - 40.79% 45.41% 53.69% 62.60% 60.17% 66.37% 65.11% 71.37% 65.14% 73.18%
Identifier ® @ © @ @ ® @ @) @

RUG vs LLM Approach(cont’d)

« Base: RUG improves baseline for 21.81% in GPT-3.5 and 10.20% in GPT-4

 Sensitivity test of RUG for: GPT model/fuzzing/problem decomposition

Crate Name Tests GPT-3.5 GPT-4 Human
(Downloads) ac/rej Base . RUG . Base ' RUG . Newly API Test
w/o w. fuzzing w/o w. fuzzing w/o w. fuzzing w/o w. fuzzing Cov Rate Coverage
bincode(49M) 4/0 1.57% 1.57% 22.92% 23.91% 16.63% 18.79% 44.67% 47.91% 74.11% 64.58 %
chrono(128M) 22/13 37.88% 44.07% 47.2% 58.29% 54.04% 59.24% 56.90% 62.67% 73.05% 76.66 %
hashes(266M) P(7) 43.84% 43.84% 68.28% 68.28% 57.711% 57.71% 68.96% 85.16% 61.41% 85.17%
humantime(98M) P(5) 63.09% 64.40% 67.02% 75.39% 74.08% 75.92% 74.61% 80.37% 40.00% 79.32%
itoa(221M) 1/0 26.00% 26.00% 82.00% 96.00% 96.00% 98.00% 100.00% 100.00% 83.33% 86.00%
json(203M) - 28.10% 35.69% 44.60% 52.07% 62.26% 67.00% 70.25% 70.49% 47.33% 72.36 %
mio(145M) - 20.47% 20.47% 25.20% 25.20% 26.77% 26.77% 33.86% 33.86% 38.89% 24.19%
nom(114M) 6/1/P(14) | 25.81% 25.81% 39.93% 40.04% 51.13% 51.17%
num-traits(185M) - 36.02% 36.47% 43.20% 43.95% 46.94% 46.94% .
demangle(O3M) | P(14) | 21.32% | 21.62% | 21.83% | 6599% | 20.00% | 74.82% RUG with GPT-4
crc32fast(104M) - 62.35% 64.71% 70.59% 71.76% 87.06% 88.24%
ryu(185M) 0/3 52.51% 95.28% 61.65% 97.64% 76.40% 99.42% generates Comparable
semver(168M) 18/0 61.40% 62.96% 62.54% 73.36% 72.36% 74.64%
textwrap(134M) 1/0 88.84% 92.56% 90.15% 94.31% 92.78% 94.75% teStS tO h AU developers
time(200M) P(3) 33.08% 35.06% 48.98% 51.72% 55.34% 55.34% S S oo
toml(125M) - 32.43% 37.06% 47.28% 49.02% 59.58% 64.40% 38.90% 38.90% 25.14%
uuid(108M) 1/0 58.66% 64.44% 69.30% 77.20% 73.86% 75.08% 75.68% 0.0 88.89% 4
mean x 40.79% | 4541% | 53.69% | 62.60% | 60.17% | 66371% | 65.11% 65.14%
Identifier ® @ © @ @ ® @ & @

Evaluation on real world development

« We run the project’s original test and compare with RUG, find the coverage

differences

 For the untested regions, we submit RUG's tests as Pull Request to the project
« 113 tests submitted: 53 merged/17 rejected/43 pending for response

#[test]
test_unfill_consecutive_different_prefix()
(text, options) = unfill("foo\n*\n/");

23

pub fn untill(text: &str) -> (String, Options<’ >) {

let prefix chars: &[] = &[" ", "-", "+, "F', >, #', /']

let mut options = Options::new(®);

for (idx, line) in text.lines().enumerate() {
options.width = std::cmp::max(options.width, display width(line));
let without prefix = line.trim start matches(prefix chars);

let prefix = &line[..line.len() - without prefix.len()];

if idx == 0 {
options.initial indent = prefix;
} else if idx == 1 {
options.subsequent indent = prefix;
} else if idx > 1 {
for ((idx, x), y) in prefix.char indices().zip(options.subsequent indent.chars()) {
if x I=y {
options.subsequent _indent = &prefix[..idx];
break;
¥
Lo | | jia
if prefix.len() < options.subsequent indent.len() {
options.subsequent indent = prefix;

}

Evaluation on real world development

« We run the project’s original test and compare with RUG, find the coverage
differences

 For the untested regions, we submit RUG's tests as Pull Request to the project
» 113 tests submitted: 53 merged/17 rejected/43 pending for response

pub fn untill(text: &str) -> (String, Options<’ >) {

* RUG received positive feedback Let prefix_chars: &1 = &[° *, =, 4, T, 5 L

let mut options = options::new(@);
for (idx, line) in text.lines().enumerate() {

options.width = std::cmp::max(options.width, display width(line));
“The PR looks good,

great job at finding
a test case to

RUG can help developer in

submit missed unit tests with
53/70 accepted cases

improve the coverage
like this.”

if x I=y {
options.subsequent _indent = &prefix[..idx];
break;
¥
24 ;C fix.1 i i ,la
prefix.len() < options.subsequent indent.len() {

options.subsequent _indent = prefix;

}

* RUG leverages program analysis to guide LLM for Rust unit test generation and
address the concerns of compiling errors

« RUG can help developers to build uncovered tests and achieves a coverage
comparable with experienced human efforts

(] G _
SSLabi Gfsonsemason G- Georoe

eGeorqgiaTech

	Slide 1: RUG: Turbo LLM for Rust Unit Test Generation
	Slide 2: Content
	Slide 3: Rust’s Adoption is very Fast
	Slide 4: From Android’s Practice
	Slide 5: Rust Unit Testing
	Slide 6: Unit testing status of Rust
	Slide 7: Content
	Slide 8: Why unit test is difficult
	Slide 9: Insight: LLM + Fuzzing
	Slide 10: Content
	Slide 11: Semantic Aware Decomposition
	Slide 12
	Slide 13: Pros and Corner Cases
	Slide 14: Fuzzing as post-processing
	Slide 15: Evaluation
	Slide 16: RUG vs Synthesizing Tools
	Slide 17: RUG vs Synthesizing Tools
	Slide 18: RUG vs Fuzzing based Testing
	Slide 19: RUG vs Fuzzing based Testing
	Slide 20: RUG vs LLM Approach
	Slide 21: RUG vs LLM Approach
	Slide 22: RUG vs LLM Approach(cont’d)
	Slide 23: Evaluation on real world development
	Slide 24: Evaluation on real world development
	Slide 25: Conclusion

